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Abstract

Preloading of rolling element bearings is often used to avoid clearance in the bearings and achieve precise
dynamic requirement. Preloading gives rise to an expression of the restoring force, which is a non-linear
function of the deformation of the rolling elements. In this paper, frequency-dependent optimum support
characteristics have been found out by simultaneously minimizing the unbalance response (UBR) of the
rotor and maximizing the stability limit speed (SLS) of a flexible horizontal rotor–shaft system comprising
an unsymmetrically placed rotor disc placed on an elastic shaft mounted on preloaded rolling element
bearings at the ends supported on viscoelastic polymeric supports. A sensitivity study of the UBR and SLS
with respect to the support characteristics has been presented to have an idea about the permissible
deviation of the support characteristics from the respective optimum, at any frequency. Thus, the sensitivity
study helps the quality control man as well as the manufacturer of such supports to estimate the permissible
deviation in the most sensitive frequency zones. The results presented in this work are in terms of non-
dimensional parameters of the system and are, therefore, valid for any system under consideration.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

This paper is written as a complementary part to the authors’ paper in Ref. [1], in which the
concept of simultaneous minimization of the unbalance response (UBR) and the maximization of
the stability limit speed (SLS) was introduced to obtain optimum frequency-dependent support
characteristics for a rotor–shaft system supported on viscoelastic polymeric supports. The concept
of slope control of the support characteristics w.r.t. the frequency of excitation was also
introduced to obtain feasible polymeric support characteristics. Linearity of the stiffness function
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of the bearings was assumed in the paper primarily for the purpose of simplicity. In reality, under
any condition of loading, i.e., preloaded, loose or normal, a rolling element bearing exhibits a
restoring force which is a non-linear function of the deformation of the bearing elements [2–4].
Therefore, non-linearity of the restoring force or in other words, non-linearity of the stiffness
function of the bearings has been assumed in this paper for more accurate analysis and
completeness. The effect of preloading on rotor response has been investigated in this paper as
this is often used in a rotor–shaft system to eliminate clearance, resulting in free plays in the
bearings and to achieve precise dynamics requirements [5]. Preloading is carried out by relative
displacement of the bearing rings. This generates an initial compressive strain in the rolling elements
and as a result, the expression of the stiffness function, which is non-linear in non-preloaded
condition, becomes more complicated. Expression of stiffness under preloaded condition, as a
function of deformation of rolling elements is given in Ref. [2]. The non-linear analysis with rolling
element bearings has been reported, out of many other references, in Refs. [6,7] but the effect of
preloading was not considered. In this paper a linearization technique reported in Ref. [8] has been
used. Recently, viscoelastic polymeric materials have been used extensively as mounts or supports
for vibration control by virtue of the efficiency of such materials to dissipate vibratory energy. A
good survey of many of the applications as well as the operational advantages has been reported in
Ref. [9]. Dutt and Nakra [10] presented the efficiency of such supports in increasing the SLS of a
rotor–shaft system in comparison with other supports. Refs. [1,11] have also shown that the
frequency-dependent properties of the viscoelastic supports can be used with advantage to minimize
the UBR and increase the SLS. Moreover, recent literature [12] reports that tailor made mechanical
properties can be generated using polymers. In this work, therefore, the viscoelastic polymeric
supports are chosen. A sensitivity analysis has been reported at last to have an idea about the
percentage deviation, i.e., increment of the UBR and decrement of SLS from the respective
optimum at a particular frequency of excitation. The advantage of such an analysis is two-fold.
Firstly, though the best support characteristics can be found out theoretically, it may not be possible
to reproduce the characteristics exactly. Therefore, the sensitivity analysis will help the
manufacturer or the quality control man to identify the most sensitive frequency zone and also
get an idea about the permissible deviation of the support characteristics from the optimum, during
manufacturing or checking the quality of such supports. Secondly, the support characteristics may
also change due to change in temperature of the support elements. Hence, a sensitivity study will
help to have a knowledge about the maximum possible deviation of UBR and SLS when the
temperature changes in operating condition. The system considered in this paper is similar to
the one considered in Ref. [1] but in this paper the horizontal mounting of the rotor–shaft and the
preloaded rolling element bearings having non-linear stiffness function has been considered.

2. Analysis

2.1. Stiffness of preloaded bearings and linearization

2.1.1. Stiffness of preloaded bearing
The expression of stiffness of the preloaded bearings as a function of deformation of the rolling

elements is obtained from Ref. [2]. Following these expressions, the stiffness of a preloaded
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bearing can be written as

KbðXjÞ ¼ d1 � d2 X 2
j

��� ��� for Xj

�� ��pCr; ð1Þ

KbðXjÞ ¼ d3 Xj

�� ��2=3 for Xj

�� �� > Cr; ð2Þ

where Xj is the deflection of the bearing along x direction. Cr is the amount of deflection due to
preload and is shown in Fig. 2, and d1; d2 and d3 are constants. The constants d1; d2 and d3 can be
evaluated by substituting jXj j ¼ 0 and Cr; in the above equations. Therefore, Kbð0Þ ¼ d1 and

KbðCrÞ ¼ d1 � d2C
2
r ¼ d3C

2=3
r : Now the expression of stiffness can be written as

KbðXJÞ ¼ Kbð0Þ � ðKbð0Þ � KbðCrÞÞ Xj=Cr

�� ��2 for Xj

�� ��pCr; ð3Þ

KbðXJÞ ¼ KbðCrÞ Xj=Cr

�� ��2=3 for Xj

�� �� > Cr: ð4Þ

2.1.2. Non-dimensionalization
Non-dimensionalization of Eqs. (3) and (4) has been carried out by using the following

parameters:

cr ¼ Cr=eu; xj ¼ Xj=eu; b0 ¼ Kbð0Þ=K�; bcr ¼ KbðCrÞ=K�; bb ¼ KbðXjÞ=K�;

where K� ¼ 3EIl=ðl21 l22Þ is the stiffness of the shaft. Now Eqs. (3) and (4) can be written as

bbðxjÞ ¼ b0 � ðb0 � bcrÞ xj=cr

�� ��2 for xj

�� ��pcr; ð5Þ

bbðxjÞ ¼ bcr xj=cr

�� ��2=3 for xj

�� �� > cr: ð6Þ

2.1.3. Linearization

The non-dimensional bearing stiffness, expressed in Eqs. (5) and (6) depend on the deformation
of the rolling elements, and therefore gives rise to the restoring force varying non-linearly with the
deformation of the rolling elements. The non-linear equations are difficult to handle for further
analysis. Therefore, a linearization technique reported in Ref. [8] has been used to find the
expression of linearized stiffness. The equivalent linearized stiffness has been used in the
subsequent analysis. From Eqs. (5) and (6) the displacement-dependent restoring force can be
expressed in the form

fbðxjÞ ¼ b xj

�� ��n�1
xj; ð7Þ

where fb denotes the non-dimensional restoring force and ‘n’ is the index of non-linearity.
Considering bbl as the non-dimensional linearized stiffness it is possible to construct a non-
dimensional error function of the stiffness and from the same a non-dimensional error function of
the force experienced by the bearing by multiplying the non-dimensional error function of
stiffness by the non-dimensional deformation parameter Xj. The non-dimensional error function
of the restoring force is given by

/eS ¼ bblxj � b xj

�� ��n�1
xj: ð8Þ
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Taking care of the changes in sign, it will be convenient to consider the square of the error
function

/e2S ¼ ðjbblxj � bj jxj j
n�1xj

�� ��Þ2; ð9Þ

where bbl has been found out by the least square technique, i.e., by minimizing the integral of
/e2S, calculated over one full cycle of period Ts of the shaft, with respect to bbl . Integrating /e2S
first over Ts; we get

/e2S ¼
I
Ts

ðjbblxj � bjxj j
n�1xj jÞ

2 dt: ð10Þ

Minimizing /e2S w.r.t. bbl ; i.e., by setting q/e2S=qbbl ¼ 0 and using the fact that xj

�� ��2¼ xj %xj

(where %xj is the complex conjugate of Xj) we get

bbl ¼

H
Ts
bjxj jnþ1 dtH

Ts
jxj j2 dt

; ð11Þ

where xj as in the case of a linear system has two parts, a harmonic and a horizontal part. So

xj ¼ xj;he
iot þ xj;g; ð12Þ

where xj;h and xj;g are the complex amplitudes of the harmonic and the gravitational parts,
respectively, and ‘o’ is the whirl frequency of the rotor disc. Substituting Eq. (12) into Eq. (11)
and with some more algebraic simplifications, bbl can be obtained as

bbl ¼ b xj;h

�� ��2þ xj;g

�� ��2h iðn�1Þ=2
1þ

ðn2 � 1Þ
4

xj;h

�� �� xj;g

�� ��� �2
xj;h

�� ��2þ xj;g

�� ��2� 	þ?

2
4

3
5: ð13Þ

The details of the derivation leading to Eq. (13) can be obtained from Ref. [8]. The dimensional
linearized stiffness

ðKb;linÞ ¼ bblK
�: ð14Þ

In the derivation of dimensional equations of motion Kb;lin has boon used for the left and right
bearings with indices L and R; respectively, i.e., ðKb;linÞL and ðKb;linÞR refer to linearized stiffness of
the bearing for left and right bearings, respectively. In this work as the rotor disc is mounted
unsymmetrically the value of stiffness for left bearing will be different than that of right bearing
and these stiffnesses are calculated by using the deflections of left and right side bearings,
respectively.

2.2. Assumptions and equations of motion

2.2.1. Assumptions

The system has been assumed to comprise of a single rotor disc placed horizontally on a linearly
elastic, massless shaft having preloaded rolling element bearings at the ends supported on
viscoelastic supports. Viscous form of internal damping has been assumed for modelling the shaft.
Though preloading of rolling element bearings give rise to restoring forces varying non-linearly
with the deformation of the rolling elements, the process of linearization given in Section 2.1.3 has
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been used to obtain the linearized stiffness. Damping in rolling element bearing is negligible and
has not been considered. Gyroscopic effect due to non-central locations of the rotor disc, mass of
the supports have also been taken into account for deducing the equations of motion. Support
mass has been considered while formulating the equations of motion. The viscoelastic support has
been assumed to be a linear viscoelastic solid and has been modelled using a four-element model.

2.2.2. Equations of motion
The system considered for the analysis is shown in Fig. 1. With the expressions of the linearized

stiffness already at hand the same has been used to find out the equations of motion. The
equations have been found out from Lagrange’s principle as was followed in Ref. [1]. The
expression for kinetic energy T ; potential energy V are given as

T ¼ 1
2
½M2

’X2
2 þ M2

’Y2
2 þ IPo2 þ It

’y2 þ It
’f2 þ 2Ipo ’fy	

þ M1
’X2
1L þ M1

’Y2
1L þ M1

’X2
1R þ M1

’Y2
1R þ M3

’X2
3L þ M3

’Y2
3L þ M3

’X2
3R þ M3

’Y2
3R; ð15Þ

V ¼ 1
2½C22ðy� aÞ2 þ C22ðf� bÞ2 � 2C12ðy� aÞYs � 2C12ðf� bÞXs þ ðKb;linÞLX 2

JL

þ ðKb;linÞLY 2
JL þ ðKb;linÞRX 2

JR þ ðKb;linÞRY 2
JR þ K1X

2
1L

þ K1Y
2
1L þ K1X

2
1R þ K1Y

2
1R þ K2ðX1L � X3LÞ

2 þ K2ðY1L � Y3LÞ
2

þ K2ðX1R � X3RÞ
2 þ K2ðY1R � Y3RÞ

2	; ð16Þ

where C12 represents force/angular deflection or moment/deflection of the shaft at the rotor disc
location and is derived as K�lðe22e1Þ: C22 represents angular stiffness of the shaft at the rotor disc
location (moment/angular deflection) and is derived as K�l2ðe12e2Þ. K� is given by 3EIl=l21 l22 ; ‘E’ is

Fig. 1. (a) System diagram with preloaded bearings and (b) the support, its model with the displacements of the

elements in the X and Y directions.
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the modulus of elasticity and ‘I ’ is the sectional moment of inertia of shaft. Subscripts L and R are
for left and right sides, respectively. The absolute displacements [X2;Y2] [X1L;Y1L;X1R;Y1R] and
[X3L;Y3L;X3R;Y3R] are of the rotor disc, support mass at left and right ends and the displacements
of the secondary dampers at left and right ends, respectively. The displacements {XJL, YJL, XJR,
YJR] are relative displacements of bearings at left and right sides, respectively, y and f are the
absolute angular deflections of the rotor disc axis due to elastic deformation of the shaft about X -
and Y -axis, respectively, and the angular orientations a and b are the absolute orientation of the
rotor axis with Z-axis, considering the shaft as a rigid body in, YZ and XZ plane, respectively.
The terms (X1L2Y3L) and (X1R2Y3R) are absolute displacements of secondary springs at left and
right sides, respectively. The expression for dissipation function D can be written as

D ¼Ci½ð ’X2
s þ ’Y2

s Þ=2þ oðYs
’Xs � Xs

’YsÞ	 þ 1
2
C1½ ’X2

1L þ ’Y2
1L þ ’X2

1R þ ’Y2
1R	

þ 1
2
C2½ ’X2

3L þ ’Y2
3L þ ’X2

3R þ ’Y2
3R	; ð17Þ

where a; b; Xs; Ys can be written as

a ¼ ðXJR þ X1R � XJL � X1LÞ=L; ð18Þ

b ¼ ðYJR þ Y1R � YJL � Y1LÞ=L; ð19Þ

Xs ¼ X2 � ðXJL þ X1LÞe2 � ðXJR þ X1RÞe1; ð20Þ

Ys ¼ Y2 � ðYJL þ Y1LÞe2 � ðYJR þ Y1RÞe1: ð21Þ

Considering the bearing to have only direct stiffness and negligible damping the equations of
motion have been found out, and given in Appendix A. Where terms with subscript ‘‘h’’ denotes the
harmonic component and those with subscript ‘‘g’’ denotes gravitational components of the
respective displacement. For example any displacement Xi ¼ Xih þ Xig; where Xi is generic name for
X1;X2;Xs;X1L;X1R;X2L;X2R;X3L;X3R;XJL;XJR;Y1L;Y1R;Y2L;Y2R;Y3L;Y3R;YJL;YJR; y;f; a; b:

3. Rotor response and stability limit speed

3.1. Finding the linearized stiffness

Before obtaining the rotor response the linearized bearing stiffness has to be found out for each
operating speed. From Eq. (3) it is observed that for no deflection of the bearing elements, there is
a particular value of the bearing stiffness. When the speed of the rotor increases, the elements
deform and for the next operating speed the value of the bearing stiffness changes in a manner
given in Eq. (13). Here, for calculating the bearing stiffness the deflection corresponding to
previous step of operating speed is used in Eq. (13). Likewise the linearized stiffness value is
calculated for each operating speed of the rotor. The value of the stiffness obtained in this way is
an approximate one. A comparison between approximate linearized stiffness and the actual value
of the stiffness for left bearing has been given in Fig. 2b. Seeing the equations in Appendix A.1 it
may be found that forcing function is a harmonic function due to unbalanced excitation and a
constant gravitational function act on the rotor–shaft system. So each displacement will found as
a resultant of two components, a harmonic component and a gravitational component. Equating
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the harmonic terms and the gravitational terms in the left side of the equations in Appendix A.1 to
corresponding terms on the right-hand side will result in two sets of equations. Solution of the set
of equation due to harmonic components and that for the gravitational components will give the
harmonic and the gravitational components of displacements, respectively. The harmonic and
gravitational components have to be superposed to get resultant generalized displacement vector
{q}. The value of {q} obtained in this method assumes the Kb;lin value corresponding to the
previous iteration of o (as solution is obtained for each value of o from zero to maximum
operating speed). To get the exact solution for {q} the set of non-linear equations for the system,
as given in Appendix A.1, obtained with out isolating harmonic and gravitational parts has been
solved using the numerical method of solving sets of non-linear equations as given in Ref. [13]. In
this work the above numerical method of solution of non-linear equations has been used because,
due to the presence of many variables and equations, it is not easy to solve the harmonic set
of equations by substitution method to find out the Kb;lin as a function of o as was followed in

Fig. 2. (a) Sketch showing the deformation of the rolling element in the rolling element bearing and (b) linearized and

nonlinearized bearing stiffness w.r.t. operating speed of the system.
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Ref. [8]. The use of linearization technique in this case only helps in providing a good initial guess
to the sets of non-linear equations for quick convergence of the solution.

3.2. Harmonic components of generalized displacements

The harmonic part of generalized displacements (qh) is found by solving the harmonic set of
equations, obtained from equations in Appendix A.1. The harmonic components of the force
along X and Y directions are M2euo2 cosðotÞ and M2euo2 sinðotÞ; where eu is the eccentricity at
rotor disc and ‘t’ is time in seconds. Considering the forces due to unbalance the equations of
motion in dimensional form can be written as

½M	f .Qg þ ½C	f ’Qg þ ½K 	fQg ¼ fFhg; ð22Þ

where ½M	; ½C	; and ½K 	 are the mass, damping and stiffness matrices, respectively, and are square
type in the present analysis. The force and displacement vectors {Fh}, {Q} are column vectors and
can be written as

fFhg ¼ ½M2euo2 cosðotÞ;M2euo2 sinðotÞ; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0	T;

fQg ¼ ½X2;h;Y2;h;XJL;h;YJL;hXJR;h;YJR;h;X1L;h;Y1L;h;

X1R;h;Y1R;h;X3L;h;Y3L;h;X3R;h;Y3R;h;fh; yh	T:

The force vector can also be written as fFhg ¼ ffhgeiot:
Assuming a harmonic solution Qi ¼ qi;he

iot; for finding out steady state synchronous response,
where Qi is the ith element of {Q}, the equation of motion can be represented as

½�o2½M	 þ io½C	 þ ½K		fqhg ¼ ffhg: ð23Þ

Using the non-dimensional parameters d ¼ o=on;R ¼ Ip=It; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�=C2

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
It=M2

p
; a1 ¼ M1=M2;

a2 ¼ M3=M2; zi ¼ Ci=Cc; b1 ¼ K1=K�; b2 ¼ K2=K�; z1 ¼ C1=Cc; z2 ¼ C2=C�
c ; bbl ¼ Kbl=k the

forced non-dimensional equations of motion for harmonic displacements can be found out, from
Appendix A.2, in a similar way followed for finding dimensional set of equations explained in
Section 3.1. The set of Eq. (23) can be expressed in the form

½A	fqhg ¼ ffhg; ð24Þ

where {qh} and {fh} denote harmonic components of the generalized displacement and the
amplitude of force vector, respectively.

3.3. Gravitational components of generalized displacements

The gravitational components of generalized displacements can be obtained from Appendix
A.1 by solving the set of equations due to gravitational components. In gravitational components
of displacements the time derivatives of the displacements will be zero, since these displacements
are constants but the gravitational components of displacements will be both along X and Y

directions. The displacements along X direction exists due to the presence of internal damping in
the rotor–shaft. The generalized displacements due to gravity can be written as {qg}. Now the
total rotor response can be obtained by superimposing the gravitational component on which can
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be written as

fqg ¼ fqhg þ fqgg: ð25Þ

3.4. Rotor response

The superimposed solution obtained, in the above section, by superimposing harmonic and
gravitational part of the displacement vectors are the approximate ones and used for the initial
guess for the exact solution. The exact solution for a horizontal system subjected to harmonic
loading due to unbalance can be found out by solving the sets of non-linear equations given in
Appendix A. After getting the generalized rotor response the UBR can be obtained as

z2 ¼ ½Realðq1eiotÞ þ i Realðq2e
iotÞ	: ð26Þ

The non-dimensional UBR amplitude can be written as

RD ¼jz2j=eu: ð27Þ

3.5. Stability limit

To find the SLS of the system, Eq. (22) can be written in state space form and the free vibration
problem then leads to

0 M

M 0

" #
.q

’q

( )
þ

�M 0

C K

" #
’q

q

( )
¼ f0g;

which are of the form

½A1	f ’ug þ ½A2	fug ¼ f0g; ð28Þ

where

’q

q

" #
¼ fug and

.q

’q

" #
¼ f ’ug:

For finding the SLS at a particular operating speed, the value of bearing stiffness is assumed to be
the linearized value corresponding to the same operating speed. After converting the equations
into the form as in Eq. (28) the stability analysis has been done by examining the sign of the real
part of the eigenvalues, which are complex in general, for each step of increment of speed, using
the EISPACK Subroutine [14]. The non-dimensional SLS is represented by DLIMIT :

DLIMIT ¼
Stability limit speed

Fundamental undamped natural frequency of the system ðonÞ
: ð29Þ

4. Optimization

The separate parametric analysis for RD and DLIMIT shows that for each parameter there
exists an optimum point. After determining the non-dimensional unbalance response amplitude
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(RD) and stability limit speed (DLIMIT), which are functions of non-dimensional support

parameters, i.e., b1; b2; z1; z2; optimization has been carried out in order to predict the
optimum non-dimensional support characteristics, i.e., Ksn and Z; the expressions for which are
given below:

Ksn ¼
b1b

2
2 þ 4d2z22ðb1 þ b2Þ

b22 þ 4d2z22
; ð30Þ

Z ¼
2db22ðz1 þ z2Þ þ 8z1z

2
2d

3

b1b
2
2 þ 4d2z22ðb1 þ b2Þ

: ð31Þ

As reported in the author’s paper [1] two schemes for optimization have been tested.

Scheme-I

OBJECTIVE=minimize (RD)
CONSTRAINTS: (a) Support deflection should be within limits, (b) other space limitations

should not be violated, (c) loss factor of the support (Z) should be within achievable limits, and (d)
constraints for support characteristics

Scheme-II

In this scheme to maximize the SLS while minimizing the UBR an objective function has been
formulated by taking the difference of RD and DLIMIT ; i.e., (RD � DLIMIT).
OBJECTIVE=minimize (RD � DLIMIT)
CONSTRAINTS: Same as those considered in Scheme-I

Z is the loss factor of the viscoelastic support. The characteristics of viscoelastic materials are
given in Ref. [15]. It is found that the in-phase stiffness increases uniformly and monotonically
with frequency while the variation of loss factor with frequency is uniform. Again it is observed
that more often than not the maximum value of the loss factor is p1. Hence, constraint for loss
factor used in this work is, Zp1: However, no constraint on space restrictions or other system
constraints have been considered in this work. They can definitely be taken care of under the
schemes proposed. The objective function has been optimized by an optimization subroutine,
which optimizes the function by gradient method [16]. The objective function is optimized for
each stepwise increment of the speed of rotation, to predict values for support parameters for that
speed.

5. Importance of slope control

5.1. Examples

Fig. 3a shows the variation of RD and DLIMIT w.r.t. d; for rotor–shaft system with preloaded
rolling element bearings at the ends using optimization Scheme-II. The system parameters
considered for analysis are: zi ¼ 0:03; ai ¼ 0:4; a2 ¼ 0:00667; b0 ¼ 4; bcr ¼ 0:5; cr ¼ 0:5; e ¼ 0:4;
g ¼ 0:1: Fig. 3b shows the variation of non-dimensional support characteristics (Ksn and Z) for the
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respective cases. From Fig. 3b it is observed that the variation of support characteristics include
sudden changes as the respective support parameters vary suddenly. Obviously, it is difficult, if
not impossible to reproduce the support characteristics with sudden variations, using a polymeric
material for which the characteristics are smooth. Therefore, a slope control technique for support
parameters as well as support characteristics has been used in this work.

5.2. Slope control

The starting values of support parameters are taken to be at their lower limits. During the next
increase in speed the optimization subroutine predicts the optimum values of support parameters

Fig. 3. (a) Variation of UBR and SLS with out using slope control (when Scheme-II optimization is followed) and

(b) variation of Ksn and Z with out slope control.
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b1; b2; z1; z2 from which support characteristics Ksn and Z can be found using the Eqs. (30) and
(31). To predict the support characteristics, which vary smoothly, constraints have been put on
the Ksn and Z curves plotted w.r.t. d such that their slopes always lie within 0–301, a value chosen
tacitly. The process of slope control used for two types of optimization schemes can be best
explained by the flow chart given in Fig. 4.

6. Sensitivity analysis

6.1. The use of sensitivity

In reality, it may not be possible for the manufacture to produce the exact values of support
stiffness and damping at a particular frequency, for the optimum performances when a passive

Fig. 4.

K.C. Panda, J.K. Dutt / Journal of Sound and Vibration 260 (2003) 731–755742



frequency-dependent support is designed. Hence it is quite useful to have at hand the expected
results, when there is a deviation from the predicted value. It helps the designers:

* To find out the most sensitive frequency zones, where excess care is required to reproduce the
predicted support characteristics.

* To find out the percentage variation in the performance of the system, in terms of RD and
DLIMIT ; if the actual support characteristics deviate from the predicted optimum values.

* To have an idea about the bound of the response and stability limit due to change in
temperature of the support as polymeric characteristics are temperature dependent.

From earlier sections it is observed that RD; DLIMIT ; Ksn and Z each is a function of b1; b2; z1
and z2: Hence we can express the percentage variation of RD and DLIMIT for unit percentage
variation of Ksn and Z each and these are nothing but the sensitivity of RD and DLIMIT w.r.t. Ksn

and Z: The sensitivity of RD and DLIMIT are found for each step wise increment of operating
speed only after finding the optimum values of Ksn and Z for each operating speed. The
mathematical expressions are as follows:

6.2. The process of finding the sensitivity

Sensitivity as explained in any text on control theory can be expressed mathematically as the
rate of change of an objective function w.r.t. a parameter. Therefore the sensitivity of RD and
DLIMIT w.r.t. Ksn and Z can found out by calculating @ðRDÞ=@Ksn; @ðDLIMITÞ=@Ksn;
@ðRDÞ=@Z; @ðDLIMITÞ=@Z: Supposing RD ¼ f1ðb1; b2; z1; z2Þ; DLIMIT ¼ f2ðb1;b2; z1; z2Þ; Ksn ¼
f3ðb1;b2; z1; z2Þ; Z ¼ f4ðb1;b2; z1; z2Þ:

@ðRDÞ
@b1

¼
@ðRDÞ
@Ksn

@Ksn

@b1
þ
@ðRDÞ
@Z

@Z
@b1

; ð32Þ

@ðRDÞ
@b2

¼
@ðRDÞ
@Ksn

@Ksn

@b2
þ
@ðRDÞ
@Z

@Z
@b2

; ð33Þ

@ðDLIMITÞ
@b1

¼
@ðDLIMITÞ

@Ksn

@Ksn

@b1
þ

@ðDLIMITÞ
@Z

@Z
@b1

; ð34Þ

@ðDLIMITÞ
@b2

¼
@ðDLIMITÞ

@Ksn

@Ksn

@b2
þ

@ðDLIMITÞ
@Z

@Z
@b2

ð35Þ

solving Eqs. (32)–(35) @ðRDÞ=@Ksn; @ðRDÞ=@Z and @ðDLIMITÞ=@Ksn; @ðDLIMITÞ=@Z are calcu-
lated, respectively. For example,

@ðRDÞ
@Ksn

¼

@Z
@b2

@ðRDÞ
@b1

�
@Z
@b1

@ðRDÞ
@b2

@Ksn

@b1

@Z
@b2

�
@Z
@b1

@Ksn

@b2

; ð36Þ
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which can also be written in percentage form, given below:

@ðRDÞ:Ksn

@Ksn:ðRDÞ
¼

@Z
@b2

b2
Z
@ðRDÞ:b1
@b1:ðRDÞ

�
@Z
@b2

b1
Z
@ðRDÞ:b2
@b2:ðRDÞ

@Ksn

@b1

b1
Ksn

@Z
@b2

b2
Z
�

@Z
@b1

b1
Z
@Ksn

@b2

b2
Ksn

: ð37Þ

7. Results and discussion

7.1. Effects of preloading

The Figs. 5a–c present the effect of preloading on RD; stiffness of left bearing ðbb;linÞL
and stiffness of right bearing ðbb;linÞR; respectively. Higher value of cr signifies that the
amount of preloading is more. Figs. 5b and c indicate that for higher value of preloading the
bearing stiffness (or reaction forces) are less, it is because higher value of preloading will reduce
the radial action force (from the shaft) on the balls of the bearing. Hence, the reaction forces are
less. From Tables 1 and 2 it is observed that when cr value increases, there is a gradual increase in
RD and after a particular value of cr RD decreases and increases again. This indicates that there
exists an optimum value of cr corresponding to which RD is minimum. The effects have been
studied for systems with rigid supports as well as with viscoelastic supports. The system
parameters for rigid support are a1 ¼ 0:4; a2 ¼ 0:00667; b ¼ 4; zi ¼ 0:005; bcr ¼ 0:5; cr ¼ 0:5;
e ¼ 0:4; g ¼ 0:1:
For the system with viscoelastic supports the system parameters are a1 ¼ 0:4; a2 ¼ 0:00667;

z1 ¼ 0:025; b ¼ 4; zi ¼ 0:005; b1 ¼ 0:5; b2 ¼ 0:25; z2 ¼ 0:02; bcr ¼ 0:5; cr ¼ 0:5; e ¼ 0:4; g ¼ 0:1:

7.2. Optimization results

In this section the optimum support characteristics and the corresponding RD and DLIMIT as
functions of d will be presented using both optimization Schemes-I and -II. For this analysis the
values of system parameters chosen are: zi ¼ 0:006; a1 ¼ 0:4; a2 ¼ 0:00667; b0 ¼ 4; bcr ¼ 0:25;
cr ¼ 0:5; e ¼ 0:4; g ¼ 0:1:
Figs. 6a and c show, respectively, the variations of RD and DLIMIT w.r.t. d for optimization

Schemes-I and -II with the concept of slope control applied to support characteristics. Fig. 6b and
d present the respective support characteristics. From Figs. 6a and c it is observed that
optimization Scheme-II undoubtedly improves the SLS in comparison to optimization Scheme-I.
At the same time, the first peak of UBR diminishes to a great extent. The reduction of UBR, as
observed in this case, is due to the choice of Optimization Scheme-II. It may be noted that the
system has two sources viz the internal damping forces in the shaft and the non-linear restoring
forces in the bearings, which may cause instability. The former being viscous in nature is
proportional to the amplitude of deflection of the rotor disc in the case of synchronous response
but the latter varies non-linearly with the deformation of the rolling elements. Therefore, the
optimization Scheme-II, which finds out the support characteristics by minimizing the UBR and
maximizing the SLS simultaneously, provides a better arrangement to dissipate the vibratory
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energy. Hence the response reduces. This also shows that Scheme-II is a better method of
obtaining support characteristics as concluded in Ref. [1]. It is also observed that the support
characteristics are fairly smooth and do not involve any sudden change. This is the advantage of
slope control technique.

7.3. Sensitivity results

Figs. 7a–d show the sensitivities of RD and DLIMIT to the support characteristics Ksn and Z.
Figs. 7a and c show the sensitivity of RD to Ksn and Z for Schemes-I and -II, respectively, and

Fig. 5. (a) Effect of different Cr on RD; (b) effect of different Cr on bearing stiffness, and (c) effect of different Cr on

right stiffness.
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Figs. 7b and d show the sensitivity of DLIMIT for the respective schemes. Sensitivity at a
particular non-dimensional frequency d, means, the percentage deviation (positive or negative) of
the quantity, e.g., RD or DLIMIT from the corresponding optimum values of Ksn (or Z) at
frequency due to +1% change in the value. It may be noticed from each of Figs. 7a–d that
outside a band of frequencies, the value of sensitivity is very low, or RD and DLIMIT are
insensitive to changes in support characteristics. So with in this frequency band, the support
characteristics should be as near the optimum values as possible in order to obtain the optimum
performance in terms of RD and DLIMIT :

Fig. 5 (continued).

Table 1

cr 0.001 0.01 0.1 0.3 1 2 4 5 6 10

RD at 1st peak 45.92 214.4 152.29 272 6.7 36 105 147.61 83.3 54

RD at 2nd peak — — — — 2.23 5.35 10 11.17 11.7 11.97

Table 1

cr 0.001 0.01 0.1 0.3 1 2 4 5 6 10

RD at 1st peak 45.92 214.4 152.29 272 6.7 36 105 147.61 83.3 54

Table 2

cr 0.001 0.01 0.1 0.3 1 2 4 5 6 10

RD at 1st peak 13.37 10.29 11.90 14.23 10.05 9.80 9.89 9.89 9.90 9.91

RD at 2nd peak 2.87 2.78 2.54 2.35 2.24 2.63 2.66 2.66 2.67 2.67

Table 2

cr 0.001 0.01 0.1 0.3 1 2 4 5 6 10

RD at 1st peak 13.37 10.29 11.90 14.23 10.05 9.80 9.89 9.89 9.90 9.91

K.C. Panda, J.K. Dutt / Journal of Sound and Vibration 260 (2003) 731–755746



It may also be noticed from Figs. 7a and c, that RD; in the case of Scheme-II, is much less
sensitive to the changes in support characteristics, and thus, Scheme-II provides more realistic
support characteristics.
In general it may be noticed that, both RD and DLIMIT are very sensitive to Ksn in comparison

with Z: This is so, because, in reality, the optimization process aims at positioning the system
natural frequencies in such a way that resonance can be avoided. So, minor change in the loss
factor does not create much change, in the values of RD or DLIMIT : It may be noticed that, a
negative deviation in the value of RD at a particular frequency or a negative sensitivity of RD and
a positive sensitivity for DLIMIT are beneficial, as in that case the unbalanced response
amplitude decreases and the SLS increases. In view of the definition of sensitivity given above,

Fig. 6. (a) UBR and SLS when RD is minimized or Scheme-I is followed, (b) Support characteristics when Scheme-I is

followed, (c) UBR and SLS when RD-DLIMIT is minimized or Scheme-II is followed, and (d) support characteristics

when Scheme-II is followed.
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deviation of the values of Ksn and Z in the negative direction are tolerable, in the most sensitive
frequency band as it will reduce RD and increase DLIMIT :

8. Conclusions

* Minimization of UBR as well as maximization of SLS is essential for designing better supports.
* Slope control technique is very useful in predicting a feasible support characteristics.
* Sensitivity results predicts the most sensitive frequency zone where care should be taken while

selecting/designing a support. It also gives an idea about the permissible deviation, of the
support characteristics, both in magnitude and sense.

Fig. 6 (continued).
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Appendix A. Resultant equations of motion for rotor–shaft system

A.1. In dimensional form

M2ð .X2h þ .X2gÞ þ KsðXsh þ XsgÞ � C12ðfh þ fg � bh � bgÞ þ Cið ’Xsh þ ’XsgÞ

þ CioðYsh þ YsgÞ ¼ f1h; ðA:1Þ

M2ð .Y2h þ .Y2gÞ þ KsðYsh þ YsgÞ � C12ðyh þ yg � ah � agÞ þ Cið ’Ysh þ ’YsgÞ � CioðXsh þ XsgÞ

¼ f2h � f2g; ðA:2Þ

ðKðXJLÞÞLðXJLh þ XJLgÞ � KsðXsh þ XsgÞe2 � Cið ’Xsh þ ’XsgÞe2 � CioðYsh þ YsgÞe2
þ C22ðfh þ fg � bh � bgÞ=l þ C12ðfh þ fg � bh � bgÞe2 � C12=lðXsh þ XsgÞ ¼ 0; ðA:3Þ

Fig. 7. (a), (b) Sensitivity plots for RD minimization and (c), (d) sensitivity plots for (RD-DLIMIT) minimization.
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ðKðYJLÞÞLðYJLh þ YJLgÞ � KsðYsh þ YsgÞe2 � Cið ’Ysh þ ’YsgÞe2 � CioðXsh þ XsgÞe2
þ C22ðyh þ yg � ah � agÞ=l þ C12ðyh þ yg � ah � agÞe2 � C12=lðYsh þ YsgÞ ¼ 0; ðA:4Þ

ðKðXJRÞÞRðXJRh þ XJRgÞ � KsðXsh þ XsgÞe1 � Cið ’Xsh þ ’XsgÞe1 � CioðYsh þ YsgÞe1
� C22ðfh þ fg � bh � bgÞ=l þ C12ðfh þ fg � bh � bgÞe1 þ C12=lðXsh þ XsgÞ ¼ 0; ðA:5Þ

ðKðYJRÞÞRðYJRh þ YJRgÞ � KsðYsh þ YsgÞe1 � Cið ’Ysh þ ’YsgÞe1 � CioðXsh þ XsgÞe1
� C22ðyh þ yg � ah � agÞ=l þ C12ðyh þ yg � ah � agÞe1 þ C12=lðYsh þ YsgÞ ¼ 0; ðA:6Þ

Fig. 7 (continued).
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M1ð .X1Lh þ .X1LgÞ � KsðXsh þ XsgÞe2 þ C22ðfh þ fg � bh � bgÞ=l þ K1ðX1Lh þ X1LgÞ

þ C1ð ’X1Lh þ ’X1LgÞ þ K2ðX1Lh þ X1Lg � X3Lh � X3LgÞ þ C12ðfh þ fg � bh � bgÞe2

� C12=lðXsh þ XsgÞ � Cið ’Xsh þ ’XsgÞe2 � CioYse2 ¼ 0; ðA:7Þ

M1ð .Y1Lh þ .Y1LgÞ � KsðYsh þ YsgÞe2 þ C22ðyh þ yg � ah � agÞ=l þ K1ðY1Lh þ Y1LgÞ

þ C1ð ’Y1Lh þ ’Y1LgÞ þ K2ðY1Lh þ Y1Lg � Y3Lh � Y3LgÞ þ C12ðyh þ yg � ah � agÞe2

� C12=lðYsh þ YsgÞ � Cið ’Xsh þ ’XsgÞe2 þ CioðXsh þ XsgÞe2 ¼ �f3g; ðA:8Þ

M1ð .X1Rh þ .X1RgÞ � KsðXsh þ XsgÞe1 � C22ðfh þ fg � bh � bgÞ=l þ K1ðX1Rh þ X1RgÞ

þ C1ð ’X1Rh þ ’X1RgÞ þ K2ðX1Rh þ X1Rg � X3Rh � X3RgÞ þ C12ðfh þ fg � bh � bgÞe1

þ C12=lðXsh þ XsgÞ � Cið ’Xsh þ ’XsgÞe1 � CioðYsh þ YsgÞe1 ¼ 0; ðA:9Þ

M1ð .Y1Rh þ .Y1RgÞ � KsðYsh þ YsgÞe1 � C22ðyh þ yg � ah � agÞ=l þ K1ðY1Rh þ Y1RgÞ

þ C1ð ’Y1Rh þ ’Y1RgÞ þ K2ðY1Rh þ Y1Rg � Y3Rh � Y3RgÞ þ C12ðyh þ yg � ah � agÞe1

þ C12=lðYsh þ YsgÞ � Cið ’Ysh þ ’YsgÞe1 � CioðXsh þ XsgÞe1 ¼ �f3g; ðA:10Þ

M3ð .X3Lh þ .X3LgÞ þ K2ðX3Lh þ X3Lg � X1Lh � X1LgÞ þ C2ð ’X3Lh þ ’X3LgÞ ¼ 0; ðA:11Þ

M3ð .Y3Lh þ .Y3LgÞ þ K2ðY3Lh þ Y3Lg � Y1Lh � Y1LgÞ þ C2ð ’Y3Lh þ ’Y3LgÞ ¼ �f4g; ðA:12Þ

M3ð .X3Rh þ .X3RgÞ þ K2ðX3Rh þ X3Rg � X1Rh � X1RgÞ þ C2ð ’X3Rh þ ’X3RgÞ ¼ 0; ðA:13Þ

M3ð .Y3Rh þ .Y3RgÞ þ K2ðY3Rh þ Y3Rg � Y1Rh � Y1RgÞ þ C2ð ’Y3Rh þ ’Y3RgÞ ¼ �f4g; ðA:14Þ

Itð .fh þ .fgÞ þ C22ðfh þ fg � bh � bgÞ þ Ipoð’yh þ ’ygÞ � C12ðXsh þ XsgÞ ¼ 0; ðA:15Þ

Itð.yh þ .ygÞ þ C22ðyh þ yg � ah � agÞ � Ipoð ’fh þ ’fgÞ � C12ðYsh þ YsgÞ ¼ 0; ðA:16Þ

where f1h ¼ M2euo2 cosðotÞ; f2h ¼ M2euo2 sinðotÞ; f2g ¼ M2g; f3g ¼ M1g; f4g ¼ M3g: All time
derivatives of the terms with subscript ‘g’ are zero, since these terms are constants.

A.2. In non-dimensional form

d2ðx2h þ x2gÞ þ A1ðxsh þ xsgÞ � A2ðf
0
h þ f0

g � xash � xasgÞ þ 2zidðxsh þ xsgÞ

þ 2zidðysh þ ysgÞ ¼ d2; ðA:17Þ

d2ðy2h þ y2gÞ þ A1ðysh þ ysgÞ � A2ðy
0
h þ y0g � yash � yasgÞ

þ 2zidðysh þ ysgÞ � 2zidðxsh þ xsgÞ ¼ �id2; ðA:18Þ

ðbðxJLÞÞLðxJLh þ xJLgÞ � A1e2ðxsh þ xsgÞ � 2zide2ðxsh þ xsgÞ � 2zide2ðysh þ ysgÞ

þ A3ðf
0
h þ f0

g � xash � xasgÞ þ A2ðf
0
h þ f0

g � xash � xasgÞe2 � A2ðxsh þ xsgÞ ¼ 0; ðA:19Þ
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ðbðyJLÞÞLðyJLh þ yJLgÞ � A1e2ðysh þ ysgÞ � 2zide2ðysh þ ysgÞ þ 2zide2ðxsh þ xsgÞ

þ A3ðy
0
h þ y0g � yash � yasgÞ þ A2ðy

0
h þ y0g � yash � yasgÞe2 � A2ðysh þ ysgÞ ¼ 0; ðA:20Þ

ðbðxJRÞÞRðxJRh þ xJRgÞ � A1e1ðxsh þ xsgÞ � 2zide1ðxsh þ xshÞ � 2zide1ðysh þ yshÞ

� A3ðf
0
h þ f0

g � xash � xasgÞ þ A2ðf
0
h þ f0

g � xash � xasgÞe1 þ A2ðxsh þ xsgÞ ¼ 0; ðA:21Þ

ðbðyJRÞÞRðyJRh þ yJRgÞ � A1e1ðysh þ ysgÞ � 2zide1ðysh þ ysgÞ þ 2zide1ðxsh þ xsgÞ

� A3ðy
0
h þ y0g � yash � yasgÞ þ A2ðy

0
h þ y0g � yash � yasgÞe1 þ A2ðysh þ ysgÞ ¼ 0; ðA:22Þ

a1d
2ðx1Lh þ x1LgÞ � A1e2ðxsh þ xsgÞ þ A3ðf

0
h þ f0

g � xash � xasgÞ þ b1ðx1Lh þ x1LgÞ

þ b2ðx1Lh þ x1Lg � x3Lh � x3LgÞ þ 2z1dðx1Lh þ x1LgÞ þ A2e2ðf
0
h þ f0

g � xash � xasgÞ

� A2ðxsh þ xsgÞ � 2zide2ðxsh þ xsgÞ � 2zide2ðysh þ ysgÞ ¼ 0; ðA:23Þ

a1d
2ðy1Lh þ y1LgÞ � A1e2ðysh þ ysgÞ þ A3ðy

0
h þ y0g � yash � yasgÞ þ b1ðy1Lh þ y1LgÞ

þ b2ðy1Lh þ y1Lg � y3Lh þ y3LgÞ þ 2z1dðy1Lh þ y1LgÞ þ A2e2ðy
0
h þ y0g � yash � yasgÞ

� A2ðysh þ ysgÞ � 2zide2ðysh þ ysgÞ þ 2zide2ðxsh þ xsgÞ ¼ �a1g; ðA:24Þ

a1d
2ðx1Rh þ x1RgÞ � A1e1ðxsh þ xsgÞ � A3ðf

0
h þ f0

g � xash � xasgÞ þ b1ðx1Rh þ x1RgÞ

þ b2ðx1Rh þ x1Rg � x3Rh � x3RgÞ þ 2z1dðx1Rh þ x1RgÞ � A2e1ðf
0
h þ f0

g � xash � xasgÞ

þ A2ðxsh þ xsgÞ � 2zide1ðxsh þ xsgÞ � 2zie1ðysh þ ysgÞ ¼ 0; ðA:25Þ

a1d
2ðy1Rh þ y1RgÞ � A1e1ðysh þ ysgÞ � A3ðy

0
h þ y0g � yash � yasgÞ þ b1ðy1Rh þ y1RgÞ

þ b2ðy1Rh þ y1Rg � y3Rh � y3RgÞ þ 2z1dðy1Rh þ y1RgÞ þ A2e1ðy
0
h þ y0g � yash � yasgÞ

� A2ðysh þ ysgÞ � 2zide1ðysh þ ysgÞ þ 2zide1ðxsh þ xsgÞ ¼ �a1g; ðA:26Þ

a2d
2ðx3Lh þ x3LgÞ þ b2ðx3Lh þ x3Lg � x1Lh � x1LgÞ þ 2z2dðx3Lh þ x3LgÞ ¼ 0; ðA:27Þ

a2d
2ðy3Lh þ y3LgÞ þ b2ðy3Lh þ y3Lg � y1Lh � y1LgÞ þ 2z2dðy3Lh þ y3LgÞ ¼ �a2g; ðA:28Þ

a2d
2ðx3Rh þ x3RgÞ þ b2ðx3Rh þ x3Rg � x1Rh � x1RgÞ þ 2z2dðx3Rh þ x3RgÞ ¼ 0; ðA:29Þ

a2d
2ðy3Rh þ y3RgÞ þ b2ðy3Rh þ y3Rg � y1Rh � y1RgÞ þ 2z2dðy3Rh þ y3RgÞ ¼ �a2g; ðA:30Þ

A3d
2c2ðf0

h þ f0
gÞ þ A3ðf

0
h þ f0

g � xash � xasgÞ þ RA3d
2c2ðy0h þ y0gÞ

� A2ðxsh þ xsgÞ ¼ 0; ðA:31Þ

A3d
2c2ðy0h þ y0gÞ þ A3ðy

0
h þ y0g � yash � yasgÞ � RA3d

2c2ðf0
h þ f0

gÞ

� A2ðysh þ ysgÞ ¼ 0; ðA:32Þ

where xas ¼ ðxJR þ x1R2xJL2x1LÞ; yas ¼ ðyJR þ y1R2yJL2y1LÞ; xas and yas with their harmonic
and gravitational part can be written as (xash þ xasg) and (yash þ yasg), respectively. f

0 ¼ fl; y0 ¼
yl;A1 ¼ ðe21 þ e22 � e1e2Þ=e1e2;A2 ¼ ðe1 � e2Þ and A3 ¼ e1e2:
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Appendix B. Nomenclature

a angular orientations of rotor axis about x-axis
b angular orientations of rotor axis about y-axis
Cr deflection due to preload
C1 and C2 primary and secondary support damping of each support
Ci internal damping coefficient
C12 force/angular deflection or moment/deflection of the shaft at

rotor disc location, i.e., K�lðe22e1Þ
C22 moment/angular deflection or angular stiffness of the shaft at

rotor disc location, i.e., K�l2ðe12e2Þ
. ¼ d=dt

D dissipation function
/eS error function
eu eccentricity at rotor disc
E Young’s modulus of elasticity for shaft material
F force matrix
f amplitude of force
g acceleration due to gravity
Ip and It polar and transverse moments of inertia of the disc

i =
ffiffiffiffiffiffiffi
�1

p
Ks Stiffness of the shaft at rotor location in transverse plane

K� ¼ 3EIl=ðl21 l22Þ
Ksupport ¼ ðK1K2 þ ioðK1C2 þ K2C1 þ K2C2Þ2C1C2o2Þ=ðK2 þ ioC2Þ is

the complex support stiffness can also be written as Ksuð1þ iZÞ
where Ksu is inphase support stiffness and Z is the loss factor

ðKb;linÞL and ðKb;linÞR linearized stiffness of the rolling element bearings at left and right
side

K1 and K2 primary and secondary support stiffness of each support
l1 and l2 distance of rotor disc from left and right bearing
l length of the shaft
M1; M2 and M3 support mass, mass of the rotor and mass of the viscoelastic

element
t tune in seconds
T and V kinetic and potential energy
y absolute angular deflections of rotor axis about x-axis
f absolute angular deflections of rotor axis about y-axis
o angular velocity of the rotor
on fundamental undamped natural frequency of the systemffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K�=M2

p
{Q} displacement vector
{q} amplitude vector of displacements {Q}
Ts time period of the shaft
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Non-dimensional terms

a1 mass ratio (M1=M2)
a2 mass ratio (M3=M2)
bb non-dimensional bearing stiffness (Kb=K�)
b0 and bcr ¼ Kbð0Þ=K� and KbðCrÞ=K�

cr ¼ Cr=eu

b1 and b2 ¼ K1=K� and K2=K�

ðbb;linÞL; ðbb;linÞR ¼ ðKb;linÞL=K�; ðKb;linÞ=K�

DLIMIT non-dimensional stability limit (SLS divided by on)
d o=on; i.e., the non-dimensional speed of rotation of the rotor disc
e1 and e2 l1=l and l2=l

R Ip=It

RD non-dimensional response (i.e., |z2|)
Ksn non-dimensional in phase support stiffness (i.e.,

RealðKsupportÞ=K�) ð¼ b1b
2
2 þ 4dz22ðb1 þ b2Þ=ðb

2
2 þ ad2z22ÞÞ

Z loss factor of support and is given as ImagðKsupportÞ= RealðKsupportÞ

¼ 2db22ðz1þz2Þþ8z1z
2
2d

3

b1b
2
2þ4d2z22ðb1þb2Þ

� 	
g ¼ g=ðeuo2

nÞ non-dimensional gravity

zi: ¼ Ci=Cc

z1 and z2 ¼ C1=Cc and C2=Cc
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